题目内容

17.已知数列{an}的前n项和为Sn,a1=1,当n≥2时,2Sn=(n+1)an-2.
(Ⅰ)求a2,a3和通项an
(Ⅱ)设数列{bn}满足bn=an•2n-1,求{bn}的前n项和Tn

分析 (I)a1=1,当n≥2时,2Sn=(n+1)an-2.可得2(1+a2)=3a2-2,解得a2,a3.当n≥3时,2an=2(Sn-Sn-1),化为:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.即可得出.
(Ⅱ)由(I)可知,bn=an•2n-1,bn=$\left\{\begin{array}{l}{1,n=1}\\{n•{2}^{n},n≥2}\end{array}\right.$.即可得出.

解答 解:(I)a1=1,当n≥2时,2Sn=(n+1)an-2.∴2(1+a2)=3a2-2,解得a2=4.
同理可得:a3=6.当n≥3时,2an=2(Sn-Sn-1)=(n+1)an-2-(nan-1-2),化为:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$.
∵$\frac{{a}_{3}}{3}=\frac{{a}_{2}}{2}$=2,a1=1,∴$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{2}}{2}$=2.
∴n≥2时,an=2n.故an=$\left\{\begin{array}{l}{1,n=1}\\{2n,n≥2}\end{array}\right.$.
(Ⅱ)由(I)可知,bn=an•2n-1,bn=$\left\{\begin{array}{l}{1,n=1}\\{n•{2}^{n},n≥2}\end{array}\right.$.
所以当n=1时,Tn=b1=1.
当n≥2时,Tn=b1+b2+…+bn=1+2×22+3×23+…+n•2n
则2Tn=2+2×23+…+(n-1)•2n+n•2n+1
作差得:-Tn=1+2+(22+23+24+…+2n)-n•2n+1=1+$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1=(1-n)•2n+1-1,
∴Tn=(n-1)•2n+1+1,n∈N*.(n=1时也成立).

点评 本题考查了等比数列的通项公式与求和公式、“错位相减法”方法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网