题目内容

13.若函数f(x)=ax3-x2+4x+3恰有三个零点,则实数a的取值范围是(-2,0)∪(0,$\frac{14}{243}$).

分析 求出函数的导数,得到a≠0,△>0,令f′(x),求出方程f′(x)=0的根,通过通过a的范围,得到关于a的不等式组,解出即可.

解答 解:由题意可得:f′(x)=3ax2-2x+4,
若函数f(x)=ax3-x2+4x+3恰有三个零点,
则f′(x)=0有2个不相等的实数根,
故△=4-48a>0,
令f′(x)=0,解得:x=$\frac{1±\sqrt{1-12a}}{3a}$,
a>0时,x1=$\frac{1-\sqrt{1-12a}}{3a}$<x2=$\frac{1+\sqrt{1-12a}}{3a}$,
只需$\left\{\begin{array}{l}{f{(x}_{1})>0}\\{f{(x}_{2})<0}\end{array}\right.$,解得:0<a<$\frac{14}{243}$,
a<0时,x1=$\frac{1+\sqrt{1-12a}}{3a}$<x2=$\frac{1-\sqrt{1-12a}}{3a}$,
只需$\left\{\begin{array}{l}{f{(x}_{1})>0}\\{f{(x}_{2})<0}\end{array}\right.$,解得:-2<a<0,
故答案为:(-2,0)∪(0,$\frac{14}{243}$).

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网