题目内容
1.若函数f(x)在R上可导,f(x)=2xf'(e)+lnx,则f'(e)=( )| A. | 1 | B. | -1 | C. | $-\frac{1}{e}$ | D. | -e |
分析 利用求导法则求出f(x)的导函数,把x=e代入导函数中得到关于f′(e)的方程,求出方程的解即可得到f′(e)的值.
解答 解:求导得:f′(x)=2f'(e)+$\frac{1}{x}$,
把x=e代入得:f′(e)=$\frac{1}{e}$+2f′(e),
解得:f′(e)=-$\frac{1}{e}$,
故选:C
点评 本题要求学生掌握求导法则.学生在求f(x)的导函数时注意f′(e)是一个常数,这是本题的易错点.
练习册系列答案
相关题目
11.
一个几何体的正视图、侧视图和俯视图如图所示,若这个几何体的外接球的表面积为100π,则该几何体的体积为( )
| A. | $36\sqrt{3}$ | B. | $\frac{98}{3}$ | C. | $\frac{116}{3}$ | D. | $\frac{128}{3}$ |
6.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)>k2成立时,总可推出f(k+1)>(k+1)2成立”.那么,下列命题总成立的是( )
| A. | 若f(1)≤1成立,则f(9)≤81成立 | |
| B. | 若f(2)≤4成立,则f(1)>1成立 | |
| C. | 若f(3)>9成立,则当k≥1时,均有f(k)>k2成立 | |
| D. | 若f(3)>16成立,则当k≥3时,均有f(k)>k2成立 |