ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªÅ×ÎïÏßC1£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Å×ÎïÏßÉÏ´æÔÚÒ»µãGµ½½¹µãµÄ¾àÀëΪ3£¬ÇÒµãGÔÚÔ²C£ºx2+y2=9ÉÏ£®£¨¢ñ£©ÇóÅ×ÎïÏßC1µÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÍÖÔ²C2£º$\frac{x^2}{m^2}+\frac{y^2}{n^2}$=1£¨m£¾n£¾0£©µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ£¬ÇÒÀëÐÄÂÊΪ$\frac{1}{2}$£®Ö±Ïßl£ºy=kx-4½»ÍÖÔ²C2ÓÚA¡¢BÁ½¸ö²»Í¬µÄµã£¬ÈôÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÇókµÄȡֵ·¶Î§£®
·ÖÎö £¨¢ñ£©ÉèµãGµÄ×ø±êΪ£¨x0£¬y0£©£¬Áгö¹ØÓÚx0£¬y0£¬pµÄ·½³Ì×飬¼´¿ÉÇó½âÅ×ÎïÏß·½³Ì£®
£¨¢ò£©ÀûÓÃÒÑÖªÌõ¼þÍÆ³öm¡¢nµÄ¹ØÏµ£¬É裨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°Åбðʽ´óÓÚ0£¬Çó³öKµÄ·¶Î§£¬Í¨¹ýÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬ÍƳö$\overrightarrow{OA}$•$\overrightarrow{OB}$£¾0£¬È»ºóÇó½âkµÄ·¶Î§¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÉèMµãµÄ×ø±êΪ£¨x0£¬y0£©£¬ÓÉÅ×ÎïÏߵĽ¹°ë¾¶¹«Ê½¿ÉµÃ£ºx0+$\frac{p}{2}$=3£¬
x02+y02=9£¬y02=2px0£¬½âµÃx0=1£¬y0=¡À2$\sqrt{2}$£¬p=4£¬
ËùÒÔÅ×ÎïÏßC1£ºy2=8x£¬¡4·Ö
£¨¢ò£©ÓÉ£¨¢ñ£©µÃÅ×ÎïÏßC1µÄ½¹µãF£¨2£¬0£©£¬
ÓÉÍÖÔ²C2µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC1µÄ½¹µãÖØºÏ£¬
ËùÒÔÍÖÔ²C2°ë½¹¾àc=2£¬m2-n2=c2=4£¬
ÒòΪÍÖÔ²C2µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬
ËùÒÔ$\frac{2}{m}$=$\frac{1}{2}$£¬½âµÃ£ºm=4£¬n=2$\sqrt{3}$£¬
ËùÒÔÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$£»¡6·Ö
ÉèA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬
ÓÉ $\left\{\begin{array}{l}{y=kx-4}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$£¬ÕûÀíµÃ£¨4k2+3£©x2-32kx+16=0
ÓÉΤ´ï¶¨ÀíµÃ£ºx1+x2=$\frac{32k}{4{k}^{2}+3}$£¬x1x2=$\frac{16}{4{k}^{2}+3}$¡£¨8·Ö£©
ÓÉ¡÷£¾0£¬¼´£¨-32k£©2-4¡Á16£¨4k2+3£©£¾0£¬k£¾$\frac{1}{2}$»òk£¼-$\frac{1}{2}$¡¢Ù¡£¨10·Ö£©
¡ßÔµãOÔÚÒÔÏß¶ÎABΪֱ¾¶µÄÔ²µÄÍⲿ£¬Ôò$\overrightarrow{OA}$•$\overrightarrow{OB}$£¾0£¬
¡à$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨kx1-4£©•£¨kx2-4£©=£¨k2+1£©x1x2-4k£¨x1+x2£©+16
=£¨k2+1£©¡Á$\frac{16}{4{k}^{2}+3}$-4k¡Á$\frac{32k}{4{k}^{2}+3}$+16
=$\frac{16£¨4-3{k}^{2}£©}{4{k}^{2}+3}$£¾0£¬½âµÃ£º-$\frac{2\sqrt{3}}{3}$£¼k£¼$\frac{2\sqrt{3}}{3}$¡¢Ú
ÓÉ¢Ù¡¢¢ÚµÃʵÊýkµÄ·¶Î§ÊÇ-$\frac{2\sqrt{3}}{3}$£¼k£¼-$\frac{1}{2}$»ò$\frac{1}{2}$£¼k£¼$\frac{2\sqrt{3}}{3}$£¬
¡àkµÄȡֵ·¶Î§£¨-$\frac{2\sqrt{3}}{3}$£¬-$\frac{1}{2}$£©¡È£¨$\frac{1}{2}$£¬$\frac{2\sqrt{3}}{3}$£©£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²¼°Å×ÎïÏߵļòµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ô²×¶ÇúÏßµÄ×ÛºÏÓ¦Óã¬Î¤´ï¶¨Àí¼°ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| ÏîÄ¿ | °ë³ÌÂíÀËÉ | 10¹«À。ÉíÅÜ | ÃÔÄãÂíÀËÉ |
| ÈËÊý | 2 | 3 | 5 |
£¨1£©´Ó10ÈËÖÐÑ¡³ö2ÈË£¬ÇóÑ¡³öµÄÁ½ÈËÈü³Ì¾àÀëÖ®²î´óÓÚ10¹«ÀïµÄ¸ÅÂÊ£»
£¨2£©´Ó10ÈËÖÐÑ¡³ö2ÈË£¬ÉèXΪѡ³öµÄÁ½ÈËÈü³Ì¾àÀëÖ®ºÍ£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁУ®
| A£® | ϵͳ³éÑù¡¢¼òµ¥Ëæ»ú³éÑù¡¢·Ö²ã³éÑù | B£® | ϵͳ³éÑù¡¢·Ö²ã³éÑù¡¢¼òµ¥Ëæ»ú³éÑù | ||
| C£® | ·Ö²ã³éÑù¡¢¼òµ¥Ëæ»ú³éÑù¡¢ÏµÍ³³éÑù | D£® | ·Ö²ã³éÑù¡¢ÏµÍ³³éÑù¡¢¼òµ¥Ëæ»ú³éÑù |
| A£® | 1 | B£® | $\frac{11}{6}$ | C£® | $\frac{5}{6}$ | D£® | $\frac{2}{3}$ |
| A£® | 17 | B£® | 22 | C£® | 8 | D£® | 22+2 |