题目内容
14.二项式(2x+y)6的展开式中,含x2y4的项的系数是60.分析 利用二项式展开式通项确定满足条件的系数.
解答 解:二项式(2x+y)6的展开式中,展开式的含x2y4的项为${C}_{6}^{4}(2x)^{2}{y}^{4}=60{x}^{2}{y}^{4}$,所以含x2y4的项的系数是60;
故答案为:60.
点评 本题考查了二项式定理的运用;明确展开式的通项是解答的关键.
练习册系列答案
相关题目
2.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )
| A. | 使用了“三段论”,但大前提错误 | B. | 使用了“三段论”,但小前提错误 | ||
| C. | 使用了归纳推理 | D. | 使用了类比推理 |
9.已知集合A={x|2x-1>0},B={-1,0,1,2},则(∁UA)∩B( )
| A. | {1,2} | B. | {0,1} | C. | {-1,0} | D. | {-1,2} |
19.$\frac{1-{i}^{3}}{1-i}$=( )
| A. | -i | B. | i | C. | 1+i | D. | 1 |
6.某单位共有10名员工,他们某年的收入如表:
(Ⅰ)从该单位中任取2人,此2人中年薪收入高于5万的人数记为X,求X的分布列和期望;
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
预测该员工第五年的年薪为多少?
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.
| 员工编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 年薪(万元) | 3 | 3.5 | 4 | 5 | 5.5 | 6.5 | 7 | 7.5 | 8 | 50 |
(Ⅱ)已知员工年薪收入y与工作年限x成正相关关系,若某员工工作第一年至第四年的年薪如表:
| 工作年限 | 1 | 2 | 3 | 4 |
| 年薪(万元) | 3.0 | 4.2 | 5.6 | 7.2 |
附:线性回归方程${\;}_{y}^{-}$=bx+a中细数参考公式和参考数据分别为:
${\;}_{b}^{∧}$=$\frac{\sum_{i=1}^{n}{(x}_{i}{-}_{x}^{-})({y}_{i}{-}_{y}^{-})}{\sum_{i=1}^{n}({x}_{i}{-}_{x}^{-})^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-bx,其中${\;}_{x}^{-}$,${\;}_{y}^{-}$为样本均值.