题目内容

16.已知A,B均为钝角,且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,求A+B的值为$\frac{7π}{4}$.

分析 根据同角的三角函数的基本关系结合角的范围,求得cosA,cosB,在借助于A+B的余弦值,针对A+B的范围即可求解

解答 解:∵A、B均为钝角且sinA=$\frac{{\sqrt{5}}}{5},sinB=\frac{{\sqrt{10}}}{10}$,
∴cosA=-$\sqrt{1-si{n}^{2}A}$=-$\frac{2\sqrt{5}}{5}$,
cosB=-$\sqrt{1-si{n}^{2}B}$=-$\frac{3\sqrt{10}}{10}$,
∴cos(A+B)=cosAcosB-sinAsinB=(-$\frac{2\sqrt{5}}{5}$)×(-$\frac{3\sqrt{10}}{10}$)-$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
∵$\frac{π}{2}$<A<π,$\frac{π}{2}$<B<π,
∴π<A+B<2π
∴A+B=$\frac{7π}{4}$.
故答案为:$\frac{7π}{4}$.

点评 本题考查了两角和与差的正弦函数,同角的三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网