题目内容
设集合B={a1,a2,…,an},J={b1,b2,…,bm},定义集合B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},已知B={51,21,28},J={89,70,52},则B⊕J的子集为( )
| A、(100,211) |
| B、{(100,211)} |
| C、∅,(100,211) |
| D、∅,{(100,211)} |
考点:子集与真子集
专题:集合
分析:根据B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},B={51,21,28},J={89,70,52},求出B⊕J,进而可得B⊕J的子集.
解答:
解:∵B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},
B={51,21,28},J={89,70,52},
∴B⊕J={(100,211)},
B⊕J的子集为∅,{(100,211)},
故选:D
B={51,21,28},J={89,70,52},
∴B⊕J={(100,211)},
B⊕J的子集为∅,{(100,211)},
故选:D
点评:本题考查的知识点是子集与真子集,其中根据已知求出B⊕J是解答的关键.
练习册系列答案
相关题目
设函数f(x)=
,若关于x的方程f2(x)+bf(x)+c=0有且仅有三个不同的实数根x1、x2、x3,且x1<x2<x3,则x12+2x22+3x32等于( )
|
| A、6 | ||
| B、13 | ||
C、
| ||
D、
|
已知函数f(x)=x3+ax2,过曲线y=f(x)上一点P(-1,b)且平行于直线3x+y=0的切线方程为( )
| A、3x+y-1=0 |
| B、3x+y+1=0 |
| C、3x-y+1=0 |
| D、3x+y-2=0 |
等比数列{an},满足an>0,2a1+a2=a3,则公比q=( )
| A、1 | B、2 | C、3 | D、4 |
已知等比数列{an}中,a1+a2+a3=2,a2+a3+a4=4,a5+a6+a7=( )
| A、64 | B、32 | C、16 | D、8 |
数列{an}中,a1=5,anan+1=2n,则
=( )
| a1 |
| a3 |
A、
| ||
| B、2 | ||
C、
| ||
D、
|
在各项都为正数的等比数列{an}中,公比q=2,前三项和为21,则a3+a4+a5=( )
| A、33 | B、72 | C、84 | D、189 |