题目内容
设函数f(x)=
,若关于x的方程f2(x)+bf(x)+c=0有且仅有三个不同的实数根x1、x2、x3,且x1<x2<x3,则x12+2x22+3x32等于( )
|
| A、6 | ||
| B、13 | ||
C、
| ||
D、
|
考点:分段函数的应用
专题:函数的性质及应用
分析:先画出f(x)的图象,观察图形可知若关于x的方程f2(x)+af(x)+b=3有三个不同实数解满足的条件,然后图象对称性求出三个根即可.
解答:
解:分段函数的图象如图所示:
由图可知,只有当f(x)=1时,它有三个根.
由
=1,即|x+1|=1,
解得x=0,x=-2或x=-1.
∴关于x的方程f2(x)+af(x)+b=0有且只有3个不同实数解,
解分别是-2,-1,0,即x1=-2,x2=-1,x3=0,
∴x12+2x22+3x32=4+2×1+0=6,
故选:A
由图可知,只有当f(x)=1时,它有三个根.
由
| 1 |
| |x+1| |
解得x=0,x=-2或x=-1.
∴关于x的方程f2(x)+af(x)+b=0有且只有3个不同实数解,
解分别是-2,-1,0,即x1=-2,x2=-1,x3=0,
∴x12+2x22+3x32=4+2×1+0=6,
故选:A
点评:本题主要考查了函数与方程的综合运用,以及函数的图象与方程之间的关系,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
用数学归纳法证明2n>n2(n∈N*,n≥5)成立时,第二步归纳假设正确写法( )
| A、假设n=k时命题成立 |
| B、假设n=k(k∈N*)时命题成立 |
| C、假设n=k(n≥5)时命题成立 |
| D、假设n=k(n>5)时命题成立 |
已知等差数列{an}的前n项和为Sn,且a3+a5+2a10=4,则S13的值为( )
| A、13 | B、26 | C、8 | D、162 |
独立性检验,适用于检查( )变量之间的关系.
| A、线性 | B、非线性 |
| C、解释与预报 | D、分类 |
已知集合A={(x,y)|x-y+b=0}与集合B={(x,y)|
+y-3=0},若A∩B是单元素集合,则b的取值范围是( )
| 4x-x2 |
A、{1-2
| ||||
B、(1-2
| ||||
| C、(-1,3] | ||||
D、(-1,3]∪{1-2
|
设直线y=t与函数f(x)=x
,g(x)=ex的图象分别交于点M,N,则当|MN|达到最小时t的值为( )
| 1 |
| 2 |
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|
与圆x2+y2-4y=0外切,又与x轴相切的圆的圆心轨迹方程是( )
| A、y2=8x |
| B、y2=8x(x>0)和y=0 |
| C、x2=8y(y>0) |
| D、x2=8y(y>0)和x=0(y<0) |
不等式x2-3x-10<0的解集为( )
| A、{x|2<x<5} |
| B、{x|-5<x<2} |
| C、{x|-2<x<5} |
| D、{x|-5<x<-2} |
设集合B={a1,a2,…,an},J={b1,b2,…,bm},定义集合B⊕J={(a,b)|a=a1+a2+…+an,b=b1+b2+…+bm},已知B={51,21,28},J={89,70,52},则B⊕J的子集为( )
| A、(100,211) |
| B、{(100,211)} |
| C、∅,(100,211) |
| D、∅,{(100,211)} |