题目内容

已知函数f(x)在x0处可导,则
lim
△x→0
f(x0-2h)-f(x0)
h
等于(  )
A、2f′(x0
B、-f′(-x0
C、-f′(x0
D、-2f′(x0
考点:极限及其运算
专题:导数的概念及应用
分析:把要求的式子变形为2×
lim
△x→0
f(x0-2h)-f(x0)
-2h
,再利用函数在某一点的导数的定义得出结论.
解答: 解:
lim
△x→0
f(x0-2h)-f(x0)
h
=
lim
△x→0
[(-2)•
f(x0-2h)-f(x0)
-2h
]=-2×
lim
△x→0
f(x0-2h)-f(x0)
-2h
 
=-2f′(x0),
故选:D.
点评:本题主要考查函数在某一点的导数的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网