题目内容
8.在△ABC中,角A,B,C的对边分别为a,b,c.若c=3,C=$\frac{π}{3}$,sinB=2sinA,则a=$\sqrt{3}$.分析 利用由正弦定理可得b=2a,再由余弦定理可得c2=a2+b2-2ab•cosC,由此求得a的值.
解答 解:△ABC中,∵c=3,C=$\frac{π}{3}$,sinB=2sinA,∴由正弦定理可得b=2a.
再由余弦定理可得c2=a2+b2-2ab•cosC,即9=a2+4a2-2a•2a•cos$\frac{π}{3}$,
求得a=$\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 此题考查学生灵活运用正弦、余弦定理化简求值,灵活运用三角形的面积公式化简求值,是一道基础题.
练习册系列答案
相关题目
19.下列函数中既是奇函数又在区间(0,+∞)上单调递减的是( )
| A. | y=e-x | B. | y=ln(-x) | C. | y=x3 | D. | $y=\frac{1}{x}$ |