题目内容
7.已知等比数列{an}的各项均为正数,且满足a3=a1+a2,则$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$等于( )| A. | 2+3$\sqrt{2}$ | B. | 2+2$\sqrt{2}$ | C. | 3-2$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
分析 根据a3=a1+a2,得到公比的值,把要求的代数式整理成只含有首项和公比的形式,进一步化简计算得到结果.
解答 解:等比数列{an}的各项均为正数,且满足a3=a1+a2,
∴q2=1+q,
解得q=1+$\sqrt{2}$,q=1-$\sqrt{2}$(舍去),
∴$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$=$\frac{{q}^{8}+{q}^{9}}{{q}^{6}+{q}^{7}}$=q2=(1+$\sqrt{2}$)2=3+2$\sqrt{2}$,
故选:D.
点评 本题主要考查了等差数列和等比数列的性质,考查了学生综合分析的能力和对基础知识的理解,是基础题
练习册系列答案
相关题目
17.现从男、女共8名学生干部中选出3名同学(要求3人中既有男同学又有女同学)分别参加全校“资源”、“生态”和“环保”三个夏令营活动,共有270种不同的安排,那么8名学生中男、女同学的人数分别是( )
| A. | 男同学1人,女同学7人 | B. | 男同学2人,女同学6人 | ||
| C. | 男同学3人,女同学5人 | D. | 男同学4人,女同学4人 |
18.设集合A={x|2x-1>5},集合B={x|y=lg(6-x)},则A∩B等于( )
| A. | (3,6) | B. | [3,6] | C. | (3,6] | D. | [3,6) |
2.已知等比数列{an}中,各项都是正数,且a1,$\frac{1}{2}$a3,2a2成等差数列,则$\frac{{a}_{6}+{a}_{7}}{{a}_{8}+{a}_{9}}$等于( )
| A. | 1+$\sqrt{2}$ | B. | 1-$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 3-2$\sqrt{2}$ |
19.在Rt△ABC中,∠ACB=90°,点O是△ABC所在平面内一点,且|$\overrightarrow{OB}$|=1,$\overrightarrow{BO}•\overrightarrow{BA}$=1,$\overrightarrow{BO}•\overrightarrow{BC}$=$\frac{1}{2}$,则|$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BO}$|的最小值为( )
| A. | $\frac{5}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{9}{4}$ | D. | 3 |
12.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{5}$,左、右交点分别为F1,F2,点P在双曲线的右支上,且满足|OP|=|OF2|(O为坐标原点),则|PF1|:|PF2|等于( )
| A. | $\sqrt{2}$:1 | B. | $\sqrt{3}$:1 | C. | 2:1 | D. | $\sqrt{6}$:2 |