题目内容

定义在R上的函数f(x)满足:f(x)=f(4-x)且f(2-x)+f(x-2)=0,若f(2)=1,则f(2014)的值是(  )
A、-1B、0C、1D、无法确定
考点:抽象函数及其应用
专题:函数的性质及应用
分析:先由条件f(2-x)+f(x-2)=0推出f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),故函数f(x)为奇函数,
再由条件f(x)=f(4-x)推出函数为周期函数,根据函数奇偶性和周期性之间的关系,将条件进行转化即可得到结论.
解答: 解:∵函数f(x)满足f(2-x)+f(x-2)=0,∴f(2-x)=-f(x-2),
∴f(-x)=-f[2-(x+2)]=-f[(x+2)-2]=-f(x),∴函数f(x)为奇函数,
又f(x)满足f(x)=f(4-x),∴f(x)=f(x-4),∴f(x+8)=f(x+8-4)=f(x+4)=f(x+4-4)=f(x),
∴函数为周期函数,周期T=8,
∴f(2014)=f(251×8+6)=f(6),又f(6)=f(6-8)=f(-2)=-f(2)=-1,
故选:A.
点评:本题主要考查了抽象函数及其应用,利用函数的周期性和奇偶性进行转化是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网