题目内容
10.设y=f(t)是某港口水的深度关于时间t(时)的函数,其中0<t≤24,下表是该港口某一天从0至24时记录的时间t与水深y的关系.| t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
| A. | y=12+3sin$\frac{πt}{6}$,t∈[0,24] | B. | y=12+3sin($\frac{πt}{6}$+π),t∈[0,24] | ||
| C. | y=12+3sin$\frac{πt}{12}$,t∈[0,24] | D. | y=12+3sin($\frac{πt}{12}$+$\frac{π}{2}$),t∈[0,24] |
分析 根据最大值和最小值求出A和h,根据相邻的两个最大值之间横坐标的差,求得周期,从而求得ω,再把特殊点代入求得φ的值,从而得到函数的解析式.
解答 解:由图表可得函数y=k+Asin(ωt+φ)的最大值为15,最小值为9,
故k=$\frac{15+9}{2}$=12,且A=15-12=3.
由于当函数取得最大值时,相邻的两个t值分别为t=3和t=15,
故函数的周期等于15-3=12=$\frac{2π}{ω}$,
解得ω=$\frac{π}{6}$,
故函数的解析式为 y=12+3sin($\frac{π}{6}$t+φ).
再由当t=0时,函数值等于12,
可得12+3sinφ=12,
∴sinφ=0,
∴φ=kπ,k∈z,故可取φ=0.
故函数的解析式为y=12+3sin($\frac{π}{6}$t),t∈[0,24],
故选:A.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,根据最大值和最小值求出A和h,根据相邻的两个最大值之间横坐标的差,求得周期,从而求得ω,再把特殊点代入求得φ的值,属于中档题.
练习册系列答案
相关题目
18.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),且满足xf′(x)>2f(x),若a>b>0,则( )
| A. | b2f(a)<a2f(b) | B. | b2f(a)>a2f(b) | C. | a2f(a)<b2f(b) | D. | a2f(a)>b2f(b) |
1.已知命题p:?x∈R,都有2x≥0且x2-2x≥0,则¬p为( )
| A. | ?x∈R,都有2x≤0或x2-2x≤0 | B. | ?x0∈R,使得2x0≥0或x02-2x0≥0 | ||
| C. | ?x0∈R,使得2x0≤0且x02-2x0≤0 | D. | ?x0∈R,使得2x0<0或x02-2x0<0 |
5.已知函数f(x)=(3x+2)ex,f′(x)为f(x)的导函数,则f′(0)的值为( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
15.在等比数列{an}中a1=1,a4=64,则公比q的值为( )
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
19.对于数列{xn},若对任意n∈N*,都有$\frac{{x}_{n}+{x}_{n+2}}{2}$<xn+1成立,则称数列{xn}为“减差数列”.设bn=2t-$\frac{tn-1}{{2}^{n-1}}$,若数列b3,b4,b5,…是“减差数列”,则实数t的取值范围是( )
| A. | (-1,+∞) | B. | (-∞,-1] | C. | (1,+∞) | D. | (-∞,1] |
20.一名篮球运动员在比赛时罚球命中率为80%,则他在3次罚球中罚失1次的概率是( )
| A. | 0.384 | B. | 0.096 | C. | 0.616 | D. | 0.904 |