题目内容

20.已知函数f(x)=sinxcosx,则f(x)的最小正周期为π,f(x)在$[-\frac{π}{8},\;\frac{π}{4}]$上的最小值为-$\frac{\sqrt{2}}{4}$.

分析 由二倍角的正弦函数公式化简函数解析式可得f(x)=$\frac{1}{2}$sin2x,利用周期公式可求f(x)的最小正周期,由x∈$[-\frac{π}{8},\;\frac{π}{4}]$,可得2x∈[-$\frac{π}{4}$,$\frac{π}{2}$],利用正弦函数的图象和性质即可解得f(x)在$[-\frac{π}{8},\;\frac{π}{4}]$上的最小值.

解答 解:∵f(x)=sinxcosx=$\frac{1}{2}$sin2x,
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,
∵x∈$[-\frac{π}{8},\;\frac{π}{4}]$,
∴2x∈[-$\frac{π}{4}$,$\frac{π}{2}$],
∴f(x)=$\frac{1}{2}$sin2x∈[-$\frac{\sqrt{2}}{4}$,$\frac{1}{2}$],
∴f(x)在$[-\frac{π}{8},\;\frac{π}{4}]$上的最小值为-$\frac{\sqrt{2}}{4}$.
故答案为:π,-$\frac{\sqrt{2}}{4}$.

点评 本题主要考查了二倍角的正弦,三角函数的周期性及其求法,正弦函数的图象和性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网