题目内容
15.在复平面内,复数$\frac{1}{2+i}$对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数代数形式的乘除运算化简,求出复数$\frac{1}{2+i}$对应的点的坐标得答案.
解答 解:∵$\frac{1}{2+i}$=$\frac{2-i}{(2+i)(2-i)}=\frac{2-i}{5}=\frac{2}{5}-\frac{i}{5}$,
∴复数$\frac{1}{2+i}$对应的点的坐标为($\frac{2}{5},-\frac{1}{5}$),位于第四象限.
故选:D.
点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
5.已知$α∈[{π,\frac{3π}{2}}]$,$sinα=-\frac{3}{5}$,则tanα=( )
| A. | $-\frac{4}{3}$ | B. | $\frac{4}{3}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
3.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n-m=( )
| A. | $\frac{3}{2}$ | B. | $\frac{15}{4}$ | C. | $\frac{63}{4}$ | D. | $\frac{255}{16}$ |
10.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466-485年间.其中记载着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( )
| A. | $\frac{16}{29}$ | B. | $\frac{16}{27}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{29}$ |