题目内容
5.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是( )| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 等腰三角形 |
分析 根据集合的互异性可知a≠b≠c,进而可判定三角形不可能是等腰三角形.
解答 解:根据集合的性质可知,
a≠b≠c
∴△ABC一定不是等腰三角形.
故选:D.
点评 本题主要考查了三角形的形状判断以及集合的性质.解题的关键是对集合的性质的熟练掌握.
练习册系列答案
相关题目
15.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=$\frac{1}{x}$,当x∈(-∞,-2)时,f(x)的解析式为( )
| A. | f(x)=-$\frac{1}{x}$ | B. | f(x)=-$\frac{1}{x-2}$ | C. | f(x)=$\frac{1}{x+2}$ | D. | f(x)=-$\frac{1}{x+2}$ |
16.已知圆C关于直线x-y+1=0对称的圆的方程为:(x-1)2+(y-1)2=1,则圆C的方程为( )
| A. | x2+(y+2)2=1 | B. | (x-2)2+y2=1 | C. | x2+(y-2)2=1 | D. | (x-2)2+y2=1 |
10.若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则( )
| A. | a2+b2≤1 | B. | a2+b2≥1 | C. | $\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1 | D. | $\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1 |
14.下列命题中错误的是( )
| A. | 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β | |
| B. | 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β | |
| C. | 如果直线a∥平面α,那么a平行于平面α内的无数条直线 | |
| D. | 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β |
15.若$\frac{cos2α}{sin(α-\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,则sin(α+$\frac{π}{4}$)的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |