题目内容

10.若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

分析 由题意可得(bcosα+asinα)2=a2b2,再利用 (bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α),化简可得答案.

解答 解:若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则$\frac{cosα}{a}$+$\frac{sinα}{b}$,
∴bcosα+asinα=ab,∴(bcosα+asinα)2=a2b2
∵(bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α)=(a2+b2),
∴a2b2≤(a2+b2),∴$\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}$≥1,
故选D.

点评 本题考查恒过定点的直线,不等式性质的应用,利用 (bcosα+asinα)2≤(a2+b2)•(cos2α+sin2α),是解题的难点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网