题目内容

16.已知圆C关于直线x-y+1=0对称的圆的方程为:(x-1)2+(y-1)2=1,则圆C的方程为(  )
A.x2+(y+2)2=1B.(x-2)2+y2=1C.x2+(y-2)2=1D.(x-2)2+y2=1

分析 设圆心A(1,1)关于直线x-y+1=0对称的点B的坐标为(a,b),则由$\left\{\begin{array}{l}{\frac{b-1}{a-1}×1=-1}\\{\frac{a+1}{2}-\frac{b+1}{2}+1=0}\end{array}\right.$,求得a、b的值,可得对称圆的方程.

解答 解:设圆心A(1,1)关于直线x-y+1=0对称的点B的坐标为(a,b),
则由$\left\{\begin{array}{l}{\frac{b-1}{a-1}×1=-1}\\{\frac{a+1}{2}-\frac{b+1}{2}+1=0}\end{array}\right.$,求得a=0,b=2,故对称圆的方程为x2+(y-2)2=1,
故选C.

点评 本题主要考查求一个圆关于一条直线的对称的圆的方程的方法,关键是求出对称圆的圆心坐标,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网