题目内容

2.已知f(x)=ax2-2x(a>0),若存在实数t∈[0,2],使得|f(x)-t|≤5对任意的x∈[0,2]恒成立,则a的取值范围是$\frac{1}{5}$≤a≤$\frac{4}{9}$.

分析 令g(x)=f(x)-t=ax2-2x-t=a(x-$\frac{1}{a}$)2-$\frac{1}{a}$-t,利用|f(x)-t|≤5对任意的x∈[0,2]恒成立,可得|-$\frac{1}{a}$-t|≤5,|-t|≤5,|4a-4-t|≤5,即可求出a的取值范围.

解答 解:令g(x)=f(x)-t=ax2-2x-t=a(x-$\frac{1}{a}$)2-$\frac{1}{a}$-t,
∵|f(x)-t|≤5对任意的x∈[0,2]恒成立,
∴|-$\frac{1}{a}$-t|≤5,|-t|≤5,|4a-4-t|≤5,
∵a>0,
∴$\frac{1}{5}$≤a≤$\frac{4}{9}$.
故答案为:$\frac{1}{5}$≤a≤$\frac{4}{9}$.

点评 本题考查恒成立问题,考查学生解不等式的能力,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网