ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶ÔÈÎÒâÆ½ÃæÏòÁ¿
=£¨x£¬y£©£¬°Ñ
ÈÆÆäÆðµãÑØÄæÊ±Õë·½ÏòÐýת¦È½ÇµÃµ½ÏòÁ¿
=£¨xcos¦È-ysin¦È£¬xsin¦È+ycos¦È£©£¬½Ð×ö°ÑµãBÈÆµãAÄæÊ±Õë·½ÏòÐýת½ÇµÃµ½µãP£®
£¨1£©ÒÑÖªÆ½ÃæÄÚµãA£¨1£¬2£©£¬µãB£¨1+
£¬2-2
£©£®°ÑµãBÈÆµãAÑØÄæÊ±ÕëÐýת
ºóµÃµ½µãP£¬ÇóµãPµÄ×ø±ê£»
£¨2£©ÉèÆ½ÃæÄÚÖ±ÏßlÉϵÄÿһµãÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת
ºóµÃµ½µÄµã×é³ÉµÄÖ±Ïß·½³ÌÊÇl¡ä£ºy=-
x+1£¬ÇóÔÀ´µÄÖ±Ïßl·½³Ì£®
| AB |
| AB |
| AP |
£¨1£©ÒÑÖªÆ½ÃæÄÚµãA£¨1£¬2£©£¬µãB£¨1+
| 2 |
| 2 |
| ¦Ð |
| 4 |
£¨2£©ÉèÆ½ÃæÄÚÖ±ÏßlÉϵÄÿһµãÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת
| ¦Ð |
| 4 |
| 3 |
¿¼µã£ºÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦ÓÃ,Æ½ÃæÏòÁ¿ÊýÁ¿»ýµÄÔËËã
רÌâ£ºÆ½ÃæÏòÁ¿¼°Ó¦ÓÃ,Ö±ÏßÓëÔ²
·ÖÎö£º£¨1£©Ö±½Ó¸ù¾ÝÌâÄ¿¶¨ÒåÇó½â¼´¿É£»
£¨2£©ÉèÖ±ÏßlÉϵÄÈÎÒâÒ»µãM£¨x£¬y£©£¬½«MÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת
ºóµÃµ½µãN£¬Ôò
=£¨xcos
-ysin
£¬xsin
+ycos
£©£¬´úÈëÖ±Ïß·½³ÌÊÇl¡ä£ºy=-
x+1£¬¼´¿ÉÇó³öÖ±Ïßl·½³Ì£®
£¨2£©ÉèÖ±ÏßlÉϵÄÈÎÒâÒ»µãM£¨x£¬y£©£¬½«MÈÆ×ø±êÔµãÑØÄæÊ±Õë·½ÏòÐýת
| ¦Ð |
| 4 |
| ON |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| 3 |
½â´ð£º
½â£º£¨1£©¡ßµãA£¨1£¬2£©£¬µãB£¨1+
£¬2-2
£©£¬
¡à
=£¨
£¬-2
£©£¬
¡ßµãBÈÆµãAÑØÄæÊ±ÕëÐýת
ºóµÃµ½µãP
¡àÓÉÌâÒâ¿ÉÖª£¬
=(
cos
+2
sin
£¬
sin
-2
cos
)
=£¨3£¬-1£©£®
¡àµãPµÄ×ø±êΪ£¨3+1£¬-1+2£©=£¨4£¬1£©£»
£¨2£©ÉèÖ±ÏßlÉϵÄÈÎÒâÒ»µãM£¨x£¬y£©£¬
ÐýתºóµÄµÃµ½
£¬
Ôò
=£¨xcos
-ysin
£¬xsin
+ycos
£©
=(
(x-y)£¬
(x+y))£¬
¡àµãNµÄ×ø±êΪ(
(x-y)£¬
(x+y))£¬
´úÈëÖ±Ïß·½³ÌÊÇl¡ä£ºy=-
x+1µÃ£¬
(x+y)=-
•
(x-y)+1
»¯¼òµÃy=(2+
)x-
£®
| 2 |
| 2 |
¡à
| AB |
| 2 |
| 2 |
¡ßµãBÈÆµãAÑØÄæÊ±ÕëÐýת
| ¦Ð |
| 4 |
¡àÓÉÌâÒâ¿ÉÖª£¬
| AP |
| 2 |
| ¦Ð |
| 4 |
| 2 |
| ¦Ð |
| 4 |
| 2 |
| ¦Ð |
| 4 |
| 2 |
| ¦Ð |
| 4 |
=£¨3£¬-1£©£®
¡àµãPµÄ×ø±êΪ£¨3+1£¬-1+2£©=£¨4£¬1£©£»
£¨2£©ÉèÖ±ÏßlÉϵÄÈÎÒâÒ»µãM£¨x£¬y£©£¬
| OM |
| ON |
Ôò
| ON |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
| ¦Ð |
| 4 |
=(
| ||
| 2 |
| ||
| 2 |
¡àµãNµÄ×ø±êΪ(
| ||
| 2 |
| ||
| 2 |
´úÈëÖ±Ïß·½³ÌÊÇl¡ä£ºy=-
| 3 |
| ||
| 2 |
| 3 |
| ||
| 2 |
»¯¼òµÃy=(2+
| 3 |
| ||||
| 2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÏòÁ¿×ø±ê±íʾµÄÓ¦Óã¬ÒÔ¼°´úÈë·¨ÇóÖ±Ïß·½³Ì£®ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿