题目内容

已知A(3,0),B(0,3),C(cosα,sinα).
(1)若(2
OA
-
OB
)⊥
OC
,求cos2α;
(2)若|
OA
+
OC
|=
13
,且α∈(0,π),求
OB
OC
夹角的大小.
考点:平面向量数量积的坐标表示、模、夹角
专题:平面向量及应用
分析:(1)利用向量垂直与数量积的关系可得2
OA
OC
=
OB
OC
,再利用向量的坐标运算、三角函数基本关系式、倍角公式即可得出;
(2)利用向量模的计算公式、向量夹角公式即可得出.
解答: 解:(1)∵(2
OA
-
OB
)⊥
OC
,∴(2
OA
-
OB
)•
OC
=0,∴2
OA
OC
=
OB
OC

∴6cosα=3sinα,∴tanα=2,
cos2α=cos2α-sin2α=
1-tan2α
1+tan2α
=-
3
5

(2)∵|
OA
+
OC
|=
13
,∴(
OA
+
OC
)2=10+6cosα=13

cosα=
1
2
,又α∈(0,π)
,∴α=
π
3

OB
OC
=3sinα=
3
2
3
,|
OB
|=3,|
OC
|=1

cosα=
3
2
,α∈[0,π],∴α=
π
6
点评:本题考查了向量垂直与数量积的关系、向量的坐标运算、三角函数基本关系式、倍角公式、向量模的计算公式、向量夹角公式等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网