题目内容

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.8B.4C.2D.1

分析 根据数量积的运算可得到$(\overrightarrow{a}-\overrightarrow{b})^{2}=(\overrightarrow{a}+\overrightarrow{b})^{2}-4\overrightarrow{a}•\overrightarrow{b}$,进而求出$(\overrightarrow{a}-\overrightarrow{b})^{2}$的值,从而得出$|\overrightarrow{a}-\overrightarrow{b}|$的值.

解答 解:$(\overrightarrow{a}-\overrightarrow{b})^{2}=(\overrightarrow{a}+\overrightarrow{b})^{2}-4\overrightarrow{a}•\overrightarrow{b}$
=$(2\sqrt{3})^{2}-4×2$
=4;
∴$|\overrightarrow{a}-\overrightarrow{b}|=2$.
故选C.

点评 考查数量积的运算,求$|\overrightarrow{a}-\overrightarrow{b}|$而求$(\overrightarrow{a}-\overrightarrow{b})^{2}$的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网