题目内容

15.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=$\frac{π}{6}$,∠AOQ=α,α∈[0,π).
(1)若Q($\frac{3}{5}$,$\frac{4}{5}$),求cos(α+$\frac{π}{4}$)的值;
(2)设函数f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,求f(α)的值域.

分析 (1)根据三角函数的定义和题意求出cosα,sinα的值,再由两角差的余弦公式展开后代入求值;
(2)根据向量的数量积坐标运算和条件代入f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$,利用两角和正弦公式进行化简,根据α的范围和正弦函数的性质求出值域.

解答 解:(1)由已知可得cosα=$\frac{3}{5}$,sinα=$\frac{4}{5}$,
∴cos$(α+\frac{π}{4})$=cosαcos$\frac{π}{4}$-sinαsin$\frac{π}{4}$=$-\frac{{\sqrt{2}}}{10}$
(2)f(α)=$\overrightarrow{OP}$•$\overrightarrow{OQ}$=(cos$\frac{π}{6}$,sin$\frac{π}{6}$)•(cosα,sinα)=$\frac{\sqrt{3}}{2}$cosα+$\frac{1}{2}$sinα=$cos(α-\frac{π}{6})$,
∵α∈[0,π),∴$α-\frac{π}{6}∈[{-\frac{π}{6},\frac{5π}{6}})$,$cos(α-\frac{π}{6})$∈(-$\frac{\sqrt{3}}{2}$,1],
∴f(α)的值域是(-$\frac{\sqrt{3}}{2}$,1]

点评 本题是由关三角函数的综合题,考查了三角函数的定义,两角和差的正弦(余弦)公式,正弦函数的性质的应用,三角函数是高考的重点,必须掌握和理解公式以及三角函数的性质,并会应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网