题目内容
(选修4-1:几何证明选讲)如图,是⊙的直径,是⊙上的两点,⊥,过点作⊙的切线FD交的延长线于点.连结交于点,,则.
已知函数,若(),则= .
选修4—4:极坐标与参数方程
已知圆的极坐标方程为:.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
某射击运动员在四次射击中分别打出了10,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的标准差是 .
(本小题满分12分)
如图,三棱柱中,平面,,, 点在线段上,且,.
(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
若对,不等式恒成立,则实
数的最大值是( )
A. B. 1 C. 2 D.
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的结果,认为成立的可能性不足1%,那么的一个可能取值为( )
A.7.897 B.6.635 C. 5.024 D. 3.841
设, 对于使成立的所有常数M中,我们把M的最小值1叫做 的上确界.若,且,则的上确界为( )
A. B. C. D.
如图,半径为2的扇形的圆心角为分别为半径的中点,为弧上任意一点,则的取值范围是 .