题目内容
设P1(x1,y1)、P2(x2,y2)是函数f(x)=
图象上的两点,记点P(
,y0),且满足
=
(
+
).
(1)求y0;
(2)若Sn=f(
)+f(
)+…+f(
),其中n∈N*,求Sn;
(3)若
<a(Sn+1+
)对一切正整数n都成立,求实数a的取值范围.
| 2x | ||
2x+
|
| 1 |
| 2 |
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
(1)求y0;
(2)若Sn=f(
| 1 |
| n |
| 2 |
| n |
| n |
| n |
(3)若
| n | ||
Sn+
|
| 2 |
考点:数列与函数的综合,数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出P为P1P2的中点,y1+y2=
+
=1,由此能求出y0=
=
.
(2)由(1)知x1+x2=1,y1+y2=1,f(1)=2-
,由此利用倒序相加求和法能求出Sn=
.
(3)由
=
=
,Sn+1+
=
,知
<a(Sn+1+
)对一切正整数n都成立,等价于a>
=
,由此能求出实数a的取值范围是(
,+∞).
| 2x1 | ||
2x1+
|
| 2x2 | ||
2x2+
|
| y1+y2 |
| 2 |
| 1 |
| 2 |
(2)由(1)知x1+x2=1,y1+y2=1,f(1)=2-
| 2 |
n+3-2
| ||
| 2 |
(3)由
| n | ||
Sn+
|
| n | ||
|
| 2n |
| n+3 |
| 2 |
| n+4 |
| 2 |
| n | ||
Sn+
|
| 2 |
| ||
|
| 4 | ||
n+
|
| 2 |
| 7 |
解答:
解:(1)∵
=
(
+
),∴P为P1P2的中点,
∵P1(x1,y1)、P2(x2,y2)是函数f(x)=
图象上的两点,P(
,y0),
∴y1+y2=
+
=1,
∴y0=
=
.
(2)由(1)知x1+x2=1,y1+y2=1,f(1)=2-
,
∵Sn=f(
)+f(
)+…+f(
),
∴Sn=f(
)+f(
)+…+f(
),
∴2Sn=f(1)+[f(
)+f(
)]+[f(
)+f(
)]+…+[f(
)+f(
)]+f(1)
=2f(1)+n-1
=2(2-
)+n-1
=n+3-2
,
∴Sn=
.
(3)∵
=
=
,Sn+1+
=
,
且
<a(Sn+1+
)对一切正整数n都成立,
∴a>
=
×
=
=
,
∴当且仅当n≈
,即n=4时,
a>
=
.
∴实数a的取值范围是(
,+∞).
| OP |
| 1 |
| 2 |
| OP1 |
| OP2 |
∵P1(x1,y1)、P2(x2,y2)是函数f(x)=
| 2x | ||
2x+
|
| 1 |
| 2 |
∴y1+y2=
| 2x1 | ||
2x1+
|
| 2x2 | ||
2x2+
|
∴y0=
| y1+y2 |
| 2 |
| 1 |
| 2 |
(2)由(1)知x1+x2=1,y1+y2=1,f(1)=2-
| 2 |
∵Sn=f(
| 1 |
| n |
| 2 |
| n |
| n |
| n |
∴Sn=f(
| n |
| n |
| n-1 |
| n |
| 1 |
| n |
∴2Sn=f(1)+[f(
| 1 |
| n |
| n-1 |
| n |
| 2 |
| n |
| n-2 |
| n |
| n-1 |
| n |
| 1 |
| n |
=2f(1)+n-1
=2(2-
| 2 |
=n+3-2
| 2 |
∴Sn=
n+3-2
| ||
| 2 |
(3)∵
| n | ||
Sn+
|
| n | ||
|
| 2n |
| n+3 |
| 2 |
| n+4 |
| 2 |
且
| n | ||
Sn+
|
| 2 |
∴a>
| ||
|
| 2n |
| n+3 |
| 2 |
| n+4 |
| 4n |
| n2+7n+12 |
=
| 4 | ||
n+
|
∴当且仅当n≈
| 12 |
| n |
a>
| 4 | ||
4+
|
| 2 |
| 7 |
∴实数a的取值范围是(
| 2 |
| 7 |
点评:本题考查点的纵坐标的求法,考查数列的前n项和的求法,考查实数的取值范围的求法,解题时要认真审题,注意倒序相加求和法的合理运用.
练习册系列答案
相关题目
下列函数中,既是奇函数,又在(0,+∞)上是减函数的是( )
A、y=
| ||
| B、y=x2 | ||
| C、y=x | ||
| D、y=-x+1 |