题目内容

已知F1、F2是双曲线C:
x2
4
-
y2
12
=1的两个焦点,点P是双曲线C上一点,若|PF1|=5,则|PF2|=
 
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:确定P在双曲线的左支上,由双曲线的定义可得结论.
解答: 解:双曲线C:
x2
4
-
y2
12
=1中a=2,c=
4+12
=4,
∵|PF1|=5<c+a=6,∴P在双曲线的左支上,
∴由双曲线的定义可得|PF2|-|PF1|=4,
∴|PF2|=9
故答案为:9.
点评:本题考查双曲线的标准方程,考查双曲线的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网