题目内容
设曲线C的参数方程为
(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为( )
|
| A、sinθ=ρcos2θ |
| B、sinθ=ρcosθ |
| C、2sinθ=ρcos2θ |
| D、sinθ=2ρcos2θ |
考点:参数方程化成普通方程,点的极坐标和直角坐标的互化
专题:选作题,坐标系和参数方程
分析:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.
解答:
解:由
(t为参数),得y=x2,
令x=ρcosθ,y=ρsinθ,
代入并整理得ρcos2θ-sinθ=0.
即曲线C的极坐标方程是sinθ=ρcos2θ.
故选:A.
|
令x=ρcosθ,y=ρsinθ,
代入并整理得ρcos2θ-sinθ=0.
即曲线C的极坐标方程是sinθ=ρcos2θ.
故选:A.
点评:本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ.
练习册系列答案
相关题目
设等差数列{an}的前n项和为Sn,若a1=1,a2+a3=11,则S6-S3=( )
| A、27 | B、39 | C、45 | D、63 |
复数
的共轭复数是( )
| 1+2i |
| i |
| A、2+i | B、1+2i |
| C、2-i | D、-2+i |
设i是虚数单位,
(1+i)=3-i,则复数Z=( )
. |
| Z |
| A、1+2i | B、1-2i |
| C、2+i | D、2-i |