题目内容
19.若曲线F(x,y)=0上的两点P1(x1,y1),P2(x2,y2)满足x1≤x2且y1≥y2,则称这两点为曲线F(x,y)=0上的一对“双胞点”.下列曲线中:①$\frac{x^2}{20}+\frac{y^2}{16}=1(xy>0)$;
②$\frac{x^2}{20}-\frac{y^2}{16}=1(xy>0)$;
③y2=4x;
④|x|+|y|=1.
存在“双胞点”的曲线序号是①③④.
分析 利用新定义,分别验证,即可得出结论.
解答 解:由题意①$\frac{x^2}{20}+\frac{y^2}{16}=1(xy>0)$,在第一、三象限,单调递减,满足题意;
②$\frac{x^2}{20}-\frac{y^2}{16}=1(xy>0)$,在第一象限,单调递减,第三象限单调递增,不满足题意;
③y2=4x,存在“双胞点”比如(1,-1),(4,-4),满足题意;
④|x|+|y|=1,存在“双胞点”比如(0,1),(1,0),满足题意;
故答案为①③④.
点评 本题考查新定义,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
9.某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:
(1)请根据以上数据,求关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.
(注:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,参考数据:$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)
| 制作模型数x(个) | 10 | 20 | 30 | 40 | 50 |
| 花费时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.
(注:回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距最小二乘估计公式分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,参考数据:$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)
14.椭圆的两个焦点分别为F1(-1,0)和F2(1,0),若该椭圆与直线x+y-3=0有公共点,则其离心率的最大值为( )
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{6}}}{6}$-1 | C. | $\frac{{\sqrt{6}}}{12}$ | D. | $\frac{{\sqrt{5}}}{10}$ |
4.双曲线$\frac{x^2}{3}-{y^2}=1$的一个焦点坐标为( )
| A. | $(\sqrt{2},0)$ | B. | $(0,\sqrt{2})$ | C. | (2,0) | D. | (0,2) |