题目内容
20.下列函数中不是奇函数的是( )| A. | $y=\frac{{({{a^x}+1})x}}{{{a^x}-1}}({a>0,a≠1})$ | B. | $y=\frac{{{a^x}-{a^{-x}}}}{2}({a>0,a≠1})$ | ||
| C. | $y=\left\{\begin{array}{l}1,({x>0})\\-1,({x<0})\end{array}\right.$ | D. | $y={log_a}\frac{1+x}{1-x}({a>0,a≠1})$ |
分析 验证A不是奇函数,即可得出结论.
解答 解:A中函数的定义域为{x|x≠0},f(1)=$\frac{a+1}{a-1}$,f(-1)=-$\frac{{a}^{-1}+1}{{a}^{-1}-1}$=$\frac{a+1}{a-1}$,∴不是奇函数.
故选A.
点评 本题考查奇函数的判定,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
10.已知$\overrightarrow{AB}=3\overrightarrow e,\overrightarrow{CD}=-5\overrightarrow e(\overrightarrow e≠\overrightarrow 0)$,且$|{\overrightarrow{AD}}|=|{\overrightarrow{BC}}|$,则四边形ABCD是( )
| A. | 平行四边形 | B. | 菱形 | C. | 等腰梯形 | D. | 矩形 |
11.设函数f (x)的导函数为f′(x),对任意x∈R都有f (x)>f′(x)成立,则( )
| A. | 3f (ln2)<2 f (ln3) | B. | 3 f (ln2)=2 f (ln3) | ||
| C. | 3 f(ln2)>2 f (ln3) | D. | 3 f (ln2)与2 f (ln3)的大小不确定 |
8.已知直线l:(m+2)x+(m-1)y+4-4m=0上总存在点M,使得过M点作的圆C:x2+y2+2x-4y+3=0的两条切线互相垂直,则实数m的取值范围是( )
| A. | m≤1或m≥2 | B. | 2≤m≤8 | C. | -2≤m≤10 | D. | m≤-2或m≥8 |
5.“五一”假期期间,某餐厅对选择A、B、C三种套餐的顾客进行优惠.对选择A、B套餐的顾客都优惠10元,对选择C套餐的顾客优惠20元.根据以往“五一”假期期间100名顾客对选择A、B、C三种套餐的情况得到下表:
将频率视为概率.
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量X表示两位顾客所得优惠金额的综合,求X的分布列和期望.
| 选择套餐种类 | A | B | C |
| 选择每种套餐的人数 | 50 | 25 | 25 |
(I)若有甲、乙、丙三位顾客选择某种套餐,求三位顾客选择的套餐至少有两样不同的概率;
(II)若用随机变量X表示两位顾客所得优惠金额的综合,求X的分布列和期望.
9.我国古代“伏羲八封图”的部分与二进制和十进制的互化关系如下表,依据表中规律,A、B处应分别填写110,6.
| 八卦 | … | … | |||||
| 二进制 | 000 | 001 | 010 | 011 | … | A | … |
| 十进制 | 0 | 1 | 2 | 3 | … | B | … |