ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖª$\overrightarrow{AB}=3\overrightarrow e£¬\overrightarrow{CD}=-5\overrightarrow e£¨\overrightarrow e¡Ù\overrightarrow 0£©$£¬ÇÒ$|{\overrightarrow{AD}}|=|{\overrightarrow{BC}}|$£¬ÔòËıßÐÎABCDÊÇ£¨¡¡¡¡£©| A£® | ƽÐÐËıßÐÎ | B£® | ÁâÐÎ | C£® | µÈÑüÌÝÐÎ | D£® | ¾ØÐÎ |
·ÖÎö ÀûÓÃÏòÁ¿¹²Ïß¶¨Àí¡¢ÌÝÐε͍Òå¼´¿ÉÅжϳö½áÂÛ£®
½â´ð ½â£º¡ß$\overrightarrow{AB}=3\overrightarrow e£¬\overrightarrow{CD}=-5\overrightarrow e£¨\overrightarrow e¡Ù\overrightarrow 0£©$£¬¡à$\overrightarrow{AB}$=-$\frac{3}{5}$$\overrightarrow{CD}$£¬
ÓÖ$|{\overrightarrow{AD}}|=|{\overrightarrow{BC}}|$£¬ÔòËıßÐÎABCDÊǵÈÑüÌÝÐΣ®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿¹²Ïß¶¨Àí¡¢ÌÝÐε͍Ò壬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®
Èçͼ£¬ÓÐÒ»Ö±¾¶Îª40cmµÄÔ²ÐÎÌúƤ£¬Òª´ÓÖмô³öÒ»¸ö×î´óµÄÔ²ÐĽÇΪ900µÄÉÈÐÎÌúƤABC£¬°Ñ¼ô³öµÄÉÈÐÎΧ³ÉÒ»¸öÔ²×¶£¬ÄÇô¸ÃÔ²×¶µÄ¸ßΪ£¨¡¡¡¡£©
| A£® | $5\sqrt{2}cm$ | B£® | 20cm | C£® | $10\sqrt{7}cm$ | D£® | $5\sqrt{30}cm$ |
18£®´ÓÀDZ¤È¥ÇàÇà²ÝԵĵÀ·ÓÐ6Ìõ£¬´ÓÇàÇà²ÝÔÈ¥Ñò´åµÄµÀ·ÓÐ20Ìõ£¬ÀDZ¤ÓëÑò´å±»ÇàÇà²ÝÔ¸ô¿ª£¬ÔòÀÇÈ¥Ñò´åµÄ²»Í¬×ß·¨ÓУ¨¡¡¡¡£©
| A£® | 120 | B£® | 26 | C£® | 20 | D£® | 6 |
5£®
Èçͼ£¬Íø¸ñÉÏСÕý·½Ðεı߳¤Îª$\frac{1}{2}$£¬´ÖÏß»³öµÄÊÇij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
| A£® | 24 | B£® | 12 | C£® | 4 | D£® | 6 |
15£®ÈôAΪ¡÷ABCµÄÄڽǣ¬ÔòÏÂÁк¯ÊýÖÐÒ»¶¨È¡ÕýÖµµÄÊÇ£¨¡¡¡¡£©
| A£® | cosA | B£® | sinA | C£® | tanA | D£® | sin2A |
2£®ÒÑÖª½¹µãÔÚxÖáÉÏ£¬½¥½üÏß·½³ÌΪ$y=¡À\frac{3}{4}x$µÄË«ÇúÏߺÍÇúÏß$\frac{x^2}{4}+\frac{y^2}{b^2}=1£¨{b£¾0}£©$µÄÀëÐÄÂÊÖ®»ýΪ1£¬ÔòbµÄÖµ Ϊ£¨¡¡¡¡£©
| A£® | $\frac{6}{5}$ | B£® | 3 | C£® | 3»ò4 | D£® | $\frac{6}{5}$»ò$\frac{10}{3}$ |
20£®ÏÂÁк¯ÊýÖв»ÊÇÆæº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A£® | $y=\frac{{£¨{{a^x}+1}£©x}}{{{a^x}-1}}£¨{a£¾0£¬a¡Ù1}£©$ | B£® | $y=\frac{{{a^x}-{a^{-x}}}}{2}£¨{a£¾0£¬a¡Ù1}£©$ | ||
| C£® | $y=\left\{\begin{array}{l}1£¬£¨{x£¾0}£©\\-1£¬£¨{x£¼0}£©\end{array}\right.$ | D£® | $y={log_a}\frac{1+x}{1-x}£¨{a£¾0£¬a¡Ù1}£©$ |