题目内容

判断下列命题是全称命题还是特称命题,写出这些命题的否定,并说出这些否定的真假,不必证明.
(1)存在实数x,使得x2+2x+3≤0;
(2)有些三角形是等边三角形;
(3)方程x2-8x-10=0的每一个根都不是奇数.
考点:全称命题,特称命题,命题的真假判断与应用
专题:简易逻辑
分析:判断命题的量词,根据特称命题和全称命题的定义和性质进行判断即可.
解答: 解:(1)含有特称量词存在,命题为特称命题,
命题的否定是:对任意一个实数x,都有x2+2x+3>0;该命题为真命题.
(2)含有特称量词有些,命题为特称命题,
命题的否定是:所有的三角形都不是等边三角形;故命题为假命题.
(3)含有全称量词每一个,命题为全称命题,
命题的否定是:方程x2-8x-10=0的至少有一个根是奇数.故命题为假命题.
点评:本题主要考查含有量词的命题的否定与判断,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网