题目内容
数列{an}满足a1=1,an+1=
(n∈N).
(1)证明:数列{
}是等差数列;
(2)设bn=n(n+1)an,求数列{bn}的前n项和Sn.
| 2n+1an |
| an+2n |
(1)证明:数列{
| 2n |
| an |
(2)设bn=n(n+1)an,求数列{bn}的前n项和Sn.
考点:数列递推式,数列的求和
专题:计算题,等差数列与等比数列
分析:(1)将an+1=
(n∈N)两边取倒数并化简得
=
+
,两边再同乘以2n+1,构造出
-
=1,从而数列{
}是等差数列;
(2)由(1)得,bn=n(n+1)an=n•2n,利用错位相消法求和.
| 2n+1an |
| an+2n |
| 1 |
| an+1 |
| 1 |
| 2n+1 |
| 1 |
| 2an |
| 2n+1 |
| an+1 |
| 2n |
| an |
| 2n |
| an |
(2)由(1)得,bn=n(n+1)an=n•2n,利用错位相消法求和.
解答:
解:(1)an+1=
(n∈N).两边取倒数并化简得
=
+
,两边再同乘以2n+1,并移向得
-
=1,所以数列{
}是以
=2为首项,以1为公差的等差数列;且数列{
}的通项公式为
=2+(n-1)×1=n+1,从而数列{an}的通项公式为an=
.
(2)由(1)得,bn=n(n+1)an=n•2n,
数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n•2n,
两边同乘以2得,2Sn=1×22+2×23+…+(n-1)•2n+n×2n+1,
两式相减,得-Sn=2+22+23+…+n•2n-n×2n+1=
-n×2n+1=2n+1-2-n×2n+1
=-(n-1)×2n+1-2,
所以Sn=(n-1)×2n+1+2
| 2n+1an |
| an+2n |
| 1 |
| an+1 |
| 1 |
| 2n+1 |
| 1 |
| 2an |
| 2n+1 |
| an+1 |
| 2n |
| an |
| 2n |
| an |
| 2 |
| a1 |
| 2n |
| an |
| 2n |
| an |
| 2n |
| n+1 |
(2)由(1)得,bn=n(n+1)an=n•2n,
数列{bn}的前n项和Sn=1×2+2×22+3×23+…+n•2n,
两边同乘以2得,2Sn=1×22+2×23+…+(n-1)•2n+n×2n+1,
两式相减,得-Sn=2+22+23+…+n•2n-n×2n+1=
| 2(1-2n) |
| 1-2 |
=-(n-1)×2n+1-2,
所以Sn=(n-1)×2n+1+2
点评:本题考查等差数列的证明,错位相消法求和,考查转化,构造,论证计算等能力.
练习册系列答案
相关题目
若执行如图所示的程序框图,输出S的值为( )

| A、2log23 |
| B、log27 |
| C、3 |
| D、2 |