题目内容
如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,
=λ
,且二面角D﹣BP﹣A的大小为
,求λ的值.![]()
(1)证明见解析;(2)λ的值等于1或4.
解析试题分析:(1)取AD的中点M,连接MH,MG,由G、H、F分别是AE、BC、BE的中点,得MH∥GF,G、F、H、M四点共面,又MG∥DE,所以DE∥平面MGFH;(2)在平面ABE内过A作AB的垂线,记为AP,则AP⊥平面ABCD.以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,建立建立空间直角坐标系A﹣xyz,如图所示.可得
坐标,利用空间向量的坐标运算求出平面PBD的一个法向量=(5﹣2λ,
,2
)
,再由图可知平面ABP的一个法向量为
,由cos<
>=
=
得λ=1或4.
解:(1)证明:取AD的中点M,连接MH,MG.
∵G、H、F分别是AE、BC、BE的中点,
∴MH∥AB,GF∥AB,
∴MH∥GF,即G、F、H、M四点共面,平面FGH即平面MGFH,
又∵△ADE中,MG是中位线,∴MG∥DE
∵DE?平面MGFH,MG?平面MGFH,
∴DE∥平面MGFH,即直线DE与平面FGH平行.
(2)在平面ABE内,过A作AB的垂线,记为AP,则AP⊥平面ABCD.
以A为原点,AP、AB、AD所在的直线分别为x轴,y轴,z轴,
建立建立空间直角坐标系A﹣xyz,如图所示.
可得A(0,0,0),B(0,4,0),D(0,0,2),E(2
,﹣2,0),G(
,﹣1,0),F(
,1,0)
∴
=(0,2,0),
=(0,﹣4,2),
=(
,﹣5,0).
由
=λ
=(0,2λ,0),可得
=
+
=(
,2λ﹣5,0).
设平面PBD的法向量为
=(x,y,z),
则
,取y=
,得z=2
,x=5﹣2λ,
∴
=(5﹣2λ,
,2
),
又∵平面ABP的一个法向量为
=(0,0,1),
∴cos<
>=
=
=cos
=
,解之得λ=1或4
即λ的值等于1或4.![]()
考点:1.线面平行的性质与判定;2.二面角;3.空间想象能力.