题目内容

16.(1)已知a,b,c∈R,且2a+2b+c=8,求(a-1)2+(b+2)2+(c-3)2的最小值.
(2)请用数学归纳法证明:(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$(n≥2,n∈N*).

分析 (1)使用柯西不等式证明;
(2)先验证n=2成立,假设n=k成立,推导n=k+1成立即可.

解答 解:(1)由柯西不等式得:
(4+4+1)×[(a-1)2+(b+2)2+(c-3)2]≥[2(a-1)+2(b+2)+c-3]2
∴9[(a-1)2+(b+2)2+(c-3)2]≥(2a+2b+c-1)2
∵2a+2b+c=8,∴(a-1)2+(b+2)2+(c-3)2≥$\frac{49}{9}$,
∴(a-1)2+(b+2)2+(c-3)2的最小值是$\frac{49}{9}$.
(2)证明:①当n=2时,左边=1-$\frac{1}{4}$=$\frac{3}{4}$,右边=$\frac{2+1}{2×2}$=$\frac{3}{4}$,所以等式成立.
②假设当n=k(k≥2,k∈N+)时,等式成立,
即  (1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)=$\frac{k+1}{2k}$(k≥2,k∈N+).
当n=k+1时,(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{k}^{2}}$)(1-$\frac{1}{(k+1)^{2}}$)
=$\frac{k+1}{2k}$•$\frac{{k}^{2}+2k}{(k+1)^{2}}$=$\frac{k+2}{2(k+1)}$=$\frac{(k+1)+1}{2(k+1)}$,
∴当n=k+1时,等式成立.
∴对n≥2,n∈N+时,等式成立.

点评 本题考查了柯西不等式的应用,属于归纳法证明,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网