题目内容
9.已知f(x)=$\left\{\begin{array}{l}{2x-1,x<0}\\{3-x,x≥0}\end{array}\right.$,求f(x)>-1的解.分析 根据不等式的解法,利用分类讨论即可得到结论.
解答 解:∵f(x)=$\left\{\begin{array}{l}{2x-1,x<0}\\{3-x,x≥0}\end{array}\right.$,f(x)>-1,
∴$\left\{\begin{array}{l}{x<0}\\{2x-1>-1}\end{array}\right.$或$\left\{\begin{array}{l}{x≥0}\\{3-x>-1}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x<0}\\{x>0}\end{array}\right.$,或$\left\{\begin{array}{l}{x≥0}\\{x<4}\end{array}\right.$,
解得0≤x<4,
故不等式的解集为[0,4).
点评 本题主要考查不等式的解法,利用分类讨论是解决本题的关键,比较基础.
练习册系列答案
相关题目
4.不等式x(|x|-1)<0的解集是( )
| A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |