题目内容
设l为直线,α,β是两个不同的平面,下列命题中正确的是( )
| A、若l∥α,l∥β,则α∥β |
| B、若α⊥β,l∥α,则l⊥β |
| C、若l⊥α,l∥β,则α∥β |
| D、若l⊥α,l⊥β,则α∥β |
考点:空间中直线与直线之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:若l∥α,l∥β,则α与β相交或平行,故A错误;
若α⊥β,l∥α,则l与β相交、平行或l?β,故B错误;
若l⊥α,l∥β,则α与β相交或平行,故C错误;
若l⊥α,l⊥β,
则由平面与平面平行的判定定理知α∥β,故D正确.
故选:D.
若α⊥β,l∥α,则l与β相交、平行或l?β,故B错误;
若l⊥α,l∥β,则α与β相交或平行,故C错误;
若l⊥α,l⊥β,
则由平面与平面平行的判定定理知α∥β,故D正确.
故选:D.
点评:本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目
已知函数f(x)=
(a为常数且a>0),对于下列结论:
①函数f(x)的最小值为-2;
②函数f(x)在R上是单调函数;
③若f(x)>0在[1,+∞)上恒成立,则a的取值范围为(2,+∞);
④当x≠0时,xf′(x)>0(这里f′(x)是f(x)的导函数).
其中正确的是( )
|
①函数f(x)的最小值为-2;
②函数f(x)在R上是单调函数;
③若f(x)>0在[1,+∞)上恒成立,则a的取值范围为(2,+∞);
④当x≠0时,xf′(x)>0(这里f′(x)是f(x)的导函数).
其中正确的是( )
| A、①③④ | B、①②③ |
| C、①④ | D、③④ |
在数列{an}中,若a1=
,an=
(n≥2,n∈N*),则a2014等于( )
| 1 |
| 2 |
| 1 |
| 1-an-1 |
A、
| ||
| B、1 | ||
| C、2 | ||
| D、-1 |
下列命题是真命题的是( )
| A、?x0∈R,lnx0≤0 | ||
| B、?x∈R,3x>x3 | ||
C、a•b=0的充要条件是
| ||
| D、若 p∧q为假,则p∨q为假 |
| 3-4i |
| 1+2i |
| A、-1-2i | B、2+i |
| C、-1+2i | D、-2+i |
若f(x)=
,则f(2014)等于( )
|
| A、0 |
| B、ln2 |
| C、e-2+ln2 |
| D、1+ln2 |
已知全集U={2,3,4,5},集合A={x∈Z||x-3|<2},则集合∁UA=( )
| A、{1,2,3,4} |
| B、{2,3,4} |
| C、{1,5} |
| D、{5} |