题目内容
14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于( )| A. | 1009 | B. | -2017 | C. | 2017 | D. | -1009 |
分析 由等差数列{an},S2011=-2011,可得S2011=-2011=$\frac{2011×({a}_{1}+{a}_{2011})}{2}$=2011a1006,再利用求和公式与性质即可得出.
解答 解:由等差数列{an},S2011=-2011,
∴S2011=-2011=$\frac{2011×({a}_{1}+{a}_{2011})}{2}$=2011a1006,
∴a1006=-1,a1012=3,
则S2017=$\frac{2017({a}_{1}+{a}_{2017})}{2}$=$\frac{2017({a}_{1006}+{a}_{1012})}{2}$=2017.
故选:C.
点评 本题考查了等差数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.已知f(x)=ax2+(b-a)x+c-b(其中a>b>c),若a+b+c=0,x1、x2为f(x)的两个零点,则|x1-x2|的取值范围为( )
| A. | ($\frac{3}{2}$,2$\sqrt{3}$) | B. | (2,2$\sqrt{3}$) | C. | (1,2) | D. | (1,2$\sqrt{3}$) |
19.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$,则z=|x-2y+1|的取值范围为( )
| A. | [0,4] | B. | [0,3] | C. | [3,4] | D. | [1,3] |
6.已知x,y满足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若目标函数z=ax+y取最大值时的最优解有无数多个,则实数a的值是( )
| A. | 0 | B. | -1 | C. | ±1 | D. | 1 |
4.点P(x,y)的坐标满足约束条件$\left\{\begin{array}{l}x-2y≥0\\ x+2y+4≥0\\ 7x+2y-8≤0\end{array}\right.$,由点P向圆C:(x+2)2+(y-1)2=1作切线PA,切点为A,则线段|PA|的最小值为( )
| A. | $\frac{{4\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{55}}}{5}$ | C. | $\sqrt{19}$ | D. | $\frac{{\sqrt{33}}}{2}$ |