题目内容
19.设变量x,y满足约束条件:$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$,则z=|x-2y+1|的取值范围为( )| A. | [0,4] | B. | [0,3] | C. | [3,4] | D. | [1,3] |
分析 由约束条件作出可行域,在平面直角坐标系中画出直线x-2y+1=0,由图可知,当x-2y+1≥0时,当直线平移至B函数t=x-2y+1有最小值-4;当x-2y+1<0时,当直线平移至A函数t=x-2y+1有最大值3,取绝对值后再取并集得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤3}\\{4x-y≥-6}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{4x-y=-6}\\{x-y=0}\end{array}\right.$,解得A(-2,-2),
联立$\left\{\begin{array}{l}{4x-y=-6}\\{x+2y=3}\end{array}\right.$,解得B(-1,2),
作出直线x-2y+1=0如图,
由图可知,当x-2y+1≥0时,当直线平移至B函数t=x-2y+1有最小值-4;
当x-2y+1<0时,当直线平移至A函数t=x-2y+1有最大值3.
∴z=|x-2y+1|的取值范围为[0,4].
故选:A.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
15.定义:$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,如$|{\begin{array}{l}1&2\\ 3&4\end{array}}|=1×4-2×3=-2$,则$|{\begin{array}{l}{\int_1^2{xdx}}&3\\ 1&2\end{array}}|$=( )
| A. | 0 | B. | $\frac{3}{2}$ | C. | 3 | D. | 6 |
7.已知复数zi=($\frac{i+1}{i-1}$)2016(i为虚数单位),则z=( )
| A. | 1 | B. | -1 | C. | i | D. | -i |
14.在等差数列{an}中,前n项和为Sn,且S2011=-2011,a1012=3,则S2017等于( )
| A. | 1009 | B. | -2017 | C. | 2017 | D. | -1009 |
11.在区间[0,1]上随机取两个数x和y,则$y≥|{x-\frac{1}{2}}|$的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
9.sin40°sin10°+cos40°sin80°=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | cos50° | D. | $\frac{{\sqrt{3}}}{2}$ |