题目内容
已知数列{an}的前n项和Sn=n2,设bn=
,记数列{bn}的前n项和为Tn,求Tn的通项公式.
| an |
| 3n |
考点:数列的求和
专题:等差数列与等比数列
分析:根据n≥2,an=Sn-Sn-1,求出数列{an}的通项公式,利用错位相减法,即可得到结论.
解答:
解:∵数列{an}的前n项和Sn=n2,
∴当n≥2,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,a1=S1=1满足an=2n-1,
则an=2n-1,
则bn=
=
,
则数列{bn}的前n项和为Tn=
+
+
+…+
+
,
则
Tn=
+
+
+…+
+
,
两式相减得
Tn=
+2(
+
+…+
)-
=
+2•
-
=
+
-
-
,
∴Tn=
(
+
-
-
)=1-
(
+
),
则数列{bn}的前n项和为Tn=1-
(
+
).
∴当n≥2,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时,a1=S1=1满足an=2n-1,
则an=2n-1,
则bn=
| an |
| 3n |
| 2n-1 |
| 3n |
则数列{bn}的前n项和为Tn=
| 1 |
| 3 |
| 3 |
| 32 |
| 5 |
| 35 |
| 2n-3 |
| 3n-1 |
| 2n-1 |
| 3n |
则
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 5 |
| 34 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
两式相减得
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
| 1 |
| 3 |
| ||||
1-
|
| 2n-1 |
| 3n+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
∴Tn=
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
| 3 |
| 2 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
则数列{bn}的前n项和为Tn=1-
| 3 |
| 2 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
点评:本题主要考查数列通项公式的计算,根据数列项满足的条件n≥2,an=Sn-Sn-1,是解决本题的关键,要求熟练掌握错位相减法进行数列求和.
练习册系列答案
相关题目
今有一组实验数据如表:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )
| t | 1.99 | 3.0 | 4.0 | 5.1 | 6.12 |
| y | 1.5 | 4.04 | 7.5 | 12 | 18.01 |
| A、y=2t-2 | ||
B、y=
| ||
C、y=log
| ||
| D、y=log2t |