题目内容
14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是( )| A. | y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$ | B. | y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$ | ||
| C. | y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$ | D. | y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$ |
分析 利用反函数的求法、分段函数的性质即可得出.
解答 解:∵y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$,x≥0时,由y=2x,解得x=$\frac{1}{2}y$,把x与y互换可得:y=$\frac{1}{2}$x;
x<0,由y=-x2,解得x=-$\sqrt{-y}$,把x与y互换可得:y=$-\sqrt{-x}$.
∴函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\end{array}\right.$.
故选:B.
点评 本题考查了反函数的求法、分段函数的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
4.已知等比数列{an}满足a2=$\frac{1}{4}$,a2•a8=4(a5-1),则a4+a5+a6+a7+a8=( )
| A. | 20 | B. | 31 | C. | 62 | D. | 63 |
2.设函数y=g(x)在(-∞,+∞)内有定义,对于给定的整数k,定义函数:gk(x)=$\left\{\begin{array}{l}{g(x)(g(x)≤k)}\\{k(g(x)>k)}\end{array}\right.$,取函数g(x)=2-ex-e-x,若对任意x∈(-∞,+∞)恒有gk(x)=g(x),则( )
| A. | k的最大值为2-e-$\frac{1}{e}$ | B. | k的最小值为2-e-$\frac{1}{e}$ | ||
| C. | k的最大值为2 | D. | k的最小值为2 |
19.△ABC中,B=60°,最大边与最小边的比为$\frac{{\sqrt{3}+1}}{2}$,则△ABC的最大角为( )
| A. | 60° | B. | 75° | C. | 90° | D. | 105° |
3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=( )
| A. | 50 | B. | 100 | C. | 1500 | D. | 2500 |