题目内容

14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是(  )
A.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$

分析 利用反函数的求法、分段函数的性质即可得出.

解答 解:∵y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$,x≥0时,由y=2x,解得x=$\frac{1}{2}y$,把x与y互换可得:y=$\frac{1}{2}$x;
x<0,由y=-x2,解得x=-$\sqrt{-y}$,把x与y互换可得:y=$-\sqrt{-x}$.
∴函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\end{array}\right.$.
故选:B.

点评 本题考查了反函数的求法、分段函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网