题目内容
3.已知正项数列{an}的前n项和为Sn,若{an}和{$\sqrt{{S}_{n}}$}都是等差数列,且公差相等,则S100=( )| A. | 50 | B. | 100 | C. | 1500 | D. | 2500 |
分析 设等差数列{an}和{$\sqrt{{S}_{n}}$}的公差都为d,从而可得$\sqrt{{a}_{1}}$+d=$\sqrt{{a}_{1}+{a}_{1}+d}$,化简可得a1+2$\sqrt{{a}_{1}}$d+d2=2a1+d,再由a1+4$\sqrt{{a}_{1}}$d+4d2=3a1+3d,从而可得d(2d-1)=0,从而解得.
解答 解:设等差数列{an}和{$\sqrt{{S}_{n}}$}的公差都为d,
则$\sqrt{{S}_{2}}$=$\sqrt{{a}_{1}}$+d=$\sqrt{{a}_{1}+{a}_{1}+d}$,
两边平方可得,a1+2$\sqrt{{a}_{1}}$d+d2=2a1+d,
同理可得,a1+4$\sqrt{{a}_{1}}$d+4d2=3a1+3d,
联立消a1可得:d(2d-1)=0,
故d=0或d=$\frac{1}{2}$,
故d=0时,a1=0,故不成立;
当d=$\frac{1}{2}$时,a1=$\frac{1}{4}$,成立;
故S100=100a1+$\frac{100×99}{2}$×d
=100($\frac{1}{4}$+$\frac{99}{4}$)=2500,
故选:D.
点评 本题考查了数列的性质的判断与应用,同时考查了方程的思想的应用,属于中档题.
练习册系列答案
相关题目
14.函数y=$\left\{\begin{array}{l}{2x,x≥0}\\{-{x}^{2},x<0}\\{\;}\end{array}\right.$的反函数是( )
| A. | y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{\sqrt{-x},x<0}\\{\;}\end{array}\right.$ | B. | y=$\left\{\begin{array}{l}{\frac{x}{2},x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$ | ||
| C. | y=$\left\{\begin{array}{l}{2x,x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$ | D. | y=$\left\{\begin{array}{l}{2x,x≥0}\\{-\sqrt{-x},x<0}\\{\;}\end{array}\right.$ |
11.方程sin2x=cosx,x∈(0,π)的实根的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
8.已知集合A={x|x2-1≤0},B={x|lnx<0},则A∪B=( )
| A. | {x|x≤1} | B. | {x|0<x<1} | C. | {x|-1≤x≤1} | D. | {x|0≤x≤1} |