题目内容

19.△ABC中,B=60°,最大边与最小边的比为$\frac{{\sqrt{3}+1}}{2}$,则△ABC的最大角为(  )
A.60°B.75°C.90°D.105°

分析 设a为最大边.,根据题意求得$\frac{sinA}{sinC}$的值,进而利用正弦的两角和公式展开后,化简整理求得tnaA的值,进而求得A.

解答 解:不妨设a为最大边.由题意,$\frac{a}{c}=\frac{sinA}{sinC}=\frac{\sqrt{3}+1}{2}$,
即$\frac{sinA}{sin(120°-A)}$=$\frac{\sqrt{3}+1}{2}$,
∴$\frac{sinA}{\frac{\sqrt{3}}{2}cosA+\frac{1}{2}sinA}$=$\frac{\sqrt{3}+1}{2}$,
∴整理可得:(3-$\sqrt{3}$)sinA=(3+$\sqrt{3}$)cosA,
∴tanA=2+$\sqrt{3}$,
∴A=75°.
故选:B.

点评 本题主要考查了正弦定理的应用.解题的关键是利用正弦定理把题设中关于边的问题转化为角的关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网