题目内容
给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行;
②若两个平面都垂直于同一条直线,则这两个平面平行;
③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面;
④两个平行直线能确定一个平面,其中正确的命题是( )
①若一个平面内的两条直线与另一个平面都平行,则这两个平面平行;
②若两个平面都垂直于同一条直线,则这两个平面平行;
③若两个平面互相垂直,则在其中一个平面内的直线垂直另外一个平面;
④两个平行直线能确定一个平面,其中正确的命题是( )
| A、①和② | B、②和③ |
| C、③和④ | D、②和④ |
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:①若一个平面内的两条相交直线与另一个平面都平行,
则这两个平面平行,故①错误;
②若两个平面都垂直于同一条直线,
则由平面平行的判定定理知这两个平面平行,故②正确;
③若两个平面互相垂直,
则在其中一个平面内的直线与一个平面相交、平行或在另外一个平面内,故③错误;
④两个平行直线能确定一个平面,由公理三知④正确.
故选:D.
则这两个平面平行,故①错误;
②若两个平面都垂直于同一条直线,
则由平面平行的判定定理知这两个平面平行,故②正确;
③若两个平面互相垂直,
则在其中一个平面内的直线与一个平面相交、平行或在另外一个平面内,故③错误;
④两个平行直线能确定一个平面,由公理三知④正确.
故选:D.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
已知tanx=-
,则tan2x=( )
| 3 |
| 4 |
A、
| ||
B、-
| ||
C、-
| ||
D、
|
设tanα、tanβ是方程x2-9x+4=0的两个根,则tan(α+β)=( )
| A、-1 | B、3 | C、-3 | D、1 |
若复数(1+bi)(2-i)是纯虚数(b是实数,i是虚数单位),则b等于( )
| A、-2 | ||
B、-
| ||
C、
| ||
| D、2 |
已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为( )
| A、30° |
| B、60° |
| C、30°或60° |
| D、45°或60° |
双曲线
-
=1的焦距( )
| x2 |
| 64 |
| y2 |
| 36 |
| A、10 | B、16 | C、20 | D、100 |
设
、
、
是空间向量,则“
=x
+y
,(x,y∈R)”是“
、
、
共面”的( )
| p |
| a |
| b |
| p |
| a |
| b |
| p |
| a |
| b |
| A、充分非必要条件 |
| B、必要非充分条件 |
| C、充要条件 |
| D、既非充分也非必要条件 |