题目内容
20.已知集合 A={x|x2<4},B={0,1,2,3},则A∩B=( )| A. | ∅ | B. | {0} | C. | {0,1} | D. | {0,1,2} |
分析 先分别求出集合A,B,由此利用交集定义能求出A∩B的值.
解答 解:∵集合A={x|x2<4}={x|-2<x<2},
B={0,1,2,3},
∴A∩B={0,1}.
故选:C.
点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关题目
11.“一支医疗救援队里的医生和护士,包括我在内,总共是13名,下面讲到人员情况,无论是否把我计算在内,都不会有任何变化,在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( )
| A. | 男护士 | B. | 女护士 | C. | 男医生 | D. | 女医生 |
11.计算:4cos50°-tan40°=( )
| A. | $\sqrt{3}$ | B. | $\frac{\sqrt{2}+\sqrt{3}}{2}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
15.已知△ABC的两个顶点A(5,0),B(-5,0),周长为22,则顶点C的轨迹方程是( )
| A. | $\frac{x^2}{36}+\frac{y^2}{11}=1$ | B. | $\frac{x^2}{36}+\frac{y^2}{11}=1({y≠0})$ | ||
| C. | $\frac{x^2}{9}+\frac{y^2}{16}=1$ | D. | $\frac{x^2}{9}+\frac{y^2}{16}=1({y≠0})$ |
12.若复数$z=\frac{-2+3i}{i},i$是虚数单位,则z在复平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.已知2sinθ=1-cosθ,则tanθ=( )
| A. | -$\frac{4}{3}$或0 | B. | $\frac{4}{3}$或0 | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
7.集合A={-1,0,1,2,3},B={x|log2(x+1)<2},则A∩B等于( )
| A. | {-1,0,1,2} | B. | {0,1,2} | C. | {-1,0,1,2,3} | D. | {0,1,2,3} |