题目内容

12.在△ABC中,若a=1,b=2,cosA=$\frac{2\sqrt{2}}{3}$,则sinB=(  )
A.$\frac{\sqrt{2}}{6}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{2}{3}$

分析 由A的范围和平方关系求出sinA的值,由条件和正弦定理求出sinB的值.

解答 解:∵0<A<π,且cosA=$\frac{2\sqrt{2}}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{1}{3}$,
由正弦定理得,$\frac{a}{sinA}=\frac{b}{sinB}$,
则sinB=$\frac{b•sinA}{a}$=$\frac{2×\frac{1}{3}}{1}$=$\frac{2}{3}$,
故选D.

点评 本题考查了正弦定理,以及平方关系的应用,注意内角的范围,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网