题目内容

17.过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.-1B.-2C.-3D.-4

分析 由抛物线y2=4x与过其焦点(1,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2,由韦达定理可以求得答案.

解答 解:由题意知,抛物线y2=4x的焦点坐标为(1,0),∴直线AB的方程为y=k(x-1),
由$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$,得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),
x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,x1+x2=1,y1•y2=k(x1-1)•k(x2-1)=k2[x1•x2-(x1+x2)+1]'
则$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1•x2+y1•y2=x1•x2+k(x1-1)•k(x2-1)=-3.
故选:C.

点评 题考查直线与圆锥曲线的关系,解决问题的关键是联立抛物线方程与过其焦点的直线方程,利用韦达定理予以解决,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网