题目内容
已知各项均为正数的数列{an}满足a1=3,且
-
=an+1-2an(n∈N*)
(Ⅰ)求证:数列{an-
}为等比数列,并求数列{an}的通项公式;
(Ⅱ)设Sn=a12+a22+…+an2,Tn=
+
+…+
,求Sn+Tn.
| 1 |
| an+1 |
| 2 |
| an |
(Ⅰ)求证:数列{an-
| 1 |
| an |
(Ⅱ)设Sn=a12+a22+…+an2,Tn=
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知得an+1-
=2(an-
),从而{an-
}为一个等比数列,其公比为2,首项为a1-
=
,由此能求出an=
(2n+1+
).
(2)由Sn+Tn=(a12+a22+…+an2)+(
+
+…+
)=(a12-
)+(a22-
)+…+(an2-
)+2n,能求出Sn+Tn.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 8 |
| 3 |
| 1 |
| 3 |
| 22n+2+9 |
(2)由Sn+Tn=(a12+a22+…+an2)+(
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
解答:
(本小题满分12分)
解:(1)∵各项均为正数的数列{an}满足a1=3,且
-
=an+1-2an(n∈N*),
∴an+1-
=2(an-
),
∴{an-
}为一个等比数列,其公比为2,首项为a1-
=
,…(2分)
∴an-
=
•2n-1=
,n∈N*,①…(4分)
∵an>0,∴由①解出an=
(2n+1+
).…(5分)
(2)由①式有Sn+Tn=(a12+a22+…+an2)+(
+
+…+
)
=(a12+
)+(a22+
)+…+(an2+
)
=(a12-
)+(a22-
)+…+(an2-
)+2n…(9分)
=(
)2+(
)2+(
)2+…+(
)2+2n
=
(4n-1)+2n,n∈N*.…(12分)
解:(1)∵各项均为正数的数列{an}满足a1=3,且
| 1 |
| an+1 |
| 2 |
| an |
∴an+1-
| 1 |
| an+1 |
| 1 |
| an |
∴{an-
| 1 |
| an |
| 1 |
| a1 |
| 8 |
| 3 |
∴an-
| 1 |
| an |
| 8 |
| 3 |
| 2n+2 |
| 3 |
∵an>0,∴由①解出an=
| 1 |
| 3 |
| 22n+2+9 |
(2)由①式有Sn+Tn=(a12+a22+…+an2)+(
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
=(a12+
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
=(a12-
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| an2 |
=(
| 23 |
| 3 |
| 24 |
| 3 |
| 25 |
| 3 |
| 2n+2 |
| 3 |
=
| 64 |
| 27 |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,解题时要认真审题,是中档题.
练习册系列答案
相关题目