题目内容

已知函数y=Asin(ωx+φ)(A>0,|φ|<π)的一段图象如图所示.
(1)求函数的解析式;
(2)求这个函数的单调递增区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)由函数的图象观察可知A=2,T=π,即可求出ω的值,由(-
π
8
,2)在函数图象上,可求φ的值,从而可求函数的解析式;
(2)令2kπ-
π
2
≤2x+
4
≤2kπ+
π
2
,k∈Z,可解得函数的单调递增区间.
解答: 解:(1)∵由函数的图象观察可知:A=2,T=2(
8
+
π
8
)=π
∴ω=
T
=
π
=2
∵(-
π
8
,2)在函数图象上,即有2=2sin(φ-
π
4

∴可解得:φ=2kπ+
4
,k∈Z
∵|φ|<π
∴令k=0,可得φ=
4

故y=2sin(2x+
4
).
(2)令2kπ-
π
2
≤2x+
4
≤2kπ+
π
2
,k∈Z,可解得kπ-
8
≤x≤kπ-
π
8
,k∈Z
故函数的单调递增区间是[kπ-
8
,kπ-
π
8
],k∈Z.
点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网