题目内容

设动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ(如图所示),那么点P的轨迹是(  )
A、圆B、椭圆C、双曲线D、抛物线
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:首先利用余弦定理写出d1和d2的等量关系式,然后把它变形为(d1-d22=*的形式,即|d1-d2|=*的形式,此时满足双曲线的定义,则问题得解.
解答: 解:在△PAB中,|AB|=2,即22=d12+d22-2d1d2cos2θ,4=(d1-d22+4d1d2sin2θ,
所以|d1-d2|=2
1-λ
<2(常数),
所以点P的轨迹C是以A,B为焦点,实轴长2a=2
1-λ
的双曲线.
故选:C.
点评:本题考查双曲线的定义、标准方程,考查学生的计算能力,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网