题目内容

某班班会准备从甲、乙等7名学生中选4名学生发言,要求甲、乙至少有一人参加,那么不同的发言顺序的种数为
 
(用数字作答)
考点:排列、组合及简单计数问题
专题:排列组合
分析:根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,由排列、组合计算可得其符合条件的情况数目,由加法原理计算可得答案.
解答: 解:根据题意,分2种情况讨论,
若只有甲乙其中一人参加,有C21•C53•A44=480种情况;
若甲乙两人都参加,有C22•C52•A44=240种情况,
则不同的发言顺序种数480+240=720种,
故答案为:720
点评:本题考查排列、组合的实际应用,正确分类是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网